skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jenkins, Kristin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kurushima, Jennifer (Ed.)
    Mastery of quantitative skills is increasingly critical for student success in life sciences, but few curricula adequately incorporate quantitative skills. Quantitative Biology at Community Colleges (QB@CC) is designed to address this need by building a grassroots consortium of community college faculty to 1) engage in interdisciplinary partnerships that increase participant confidence in life science, mathematics, and statistics domains; 2) generate and publish a collection of quantitative skills–focused open education resources (OER); and 3) disseminate these OER and pedagogical practices widely, in turn expanding the network. Currently in its third year, QB@CC has recruited 70 faculty into the network and created 20 modules. Modules can be accessed by interested biology and mathematics educators in high school, 2-year, and 4-year institutions. Here, we use survey responses, focus group interviews, and document analyses (principles-focused evaluation) to evaluate the progress in accomplishing these goals midway through the QB@CC program. The QB@CC network provides a model for developing and sustaining an interdisciplinary community that benefits participants and generates valuable resources for the broader community. Similar network-building programs may wish to adopt some of the effective aspects of the QB@CC network model to meet their objectives. 
    more » « less
  2. null (Ed.)
    Abstract Starting in the early 2000’s, several reports were released recognizing the convergence of mathematics, biology and computer science, and calling for a rethinking of how undergraduates are prepared for careers in research and the science and technology workforce. This call for change requires careful consideration of the mathematical biology education system to identify key components and leverage points for change. This paper demonstrates the wide range of resources and approaches available to the mathematical biology education community to create systemic change by highlighting the efforts of four community-based education reform organizations. A closer look at these organizations provides an opportunity to examine how to leverage components of the education system including faculty, academic institutions, students, access to resources, and the power of community. 
    more » « less